
Executive

INHERITS FROM Object

REQUIRES HEADER FILES Executive.h

DEFINED IN

CLASS DESCRIPTION

Executive allows the execution of shell commands from a program, providing

 both synchronous and asynchronous execution of commands. Other features

 include the ability to direct command output to another object through the

 popen(3) mechanism and displaying of errors through a standard panel for

consistency in error reporting throughout an application.

INSTANCE VARIABLES

Inherited from Object Class isa;

Declared in Executive id target;

SEL action;

double period;

int curCmdId;

int numExecuting;

mutex_t runningLock;

mutex_t doneLock;

id running;

id done;

target The target of asynchronous operations

action Action to be sent to the target when an asynchronous

operation ends

period Period at which the timed entry gets called

curCmdId Used internally for tracking command identifiers

numExecuting Used internally to track the number of asynchronous

commands executing

Executive 1

runningLock Mutual exclusion for the running queue

doneLock Mutual exclusion for the done queue

running Queue of commands running asynchronously

done Queue of asynchronous commands that have finished

METHOD TYPES

Creating and freeing instances - free

+ new

+ newPeriod:

Target and Action - setTarget:

- target

Setting timed entry period - setPeriod:

- period

Executing commands - execute:

- execute:async:

- execute:async:environs:

Reading pipes - pipe:to::

- pipe:environs:to::

Showing errors - showError:

- showError:while:

- showError:while:on:

- showError:while:on:using:

CLASS METHODS

new

+ new

Creates a new Executive object with the default period for updating the timed entry.

See also: newPeriod:

newPeriod

+ newPeriod:(double)period

Creates a new Executive object with period for updating the timed entry.

2

INSTANCE METHODS

target

− target

Returns the target of the Executive

See also: setTarget:

setTarget:

− setTarget:anObject

Sets the Executive’s target to be anObject.

See also: target

action

− (SEL)action

Returns the action that is sent to the target when an asynchronous command

completes.

See also: setAction:

setAction

− setAction:(SEL)aSelector

Sets the action that is sent to the target when an asynchronous command completes..

See also: action

period

− (double)period

Returns the period at which the timed entry executes when looking for completed

commands.

See also: setPeriod:

setPeriod

− setPeriod:(double)p

Sets the period at which the timed entry executes when looking for completed

commands.

See also: period

execute

Executive 3

− (int)execute:(const char *)command

Begins execution of command synchronously. Returns the result of the system(3)

call.

See also: execute:async:, execute:environs:async:

execute:async:

− (int)execute:(const char *)command async:(BOOL)async

Begins execution of command. If asnyc is YES then the method returns immediately

with the command identifier (a unique integer) that can be used when the command

eventually notifies the caller that it has been completed. If async is NO then it returns

the result of the system(3) call.

See also: execute:, execute:environs:async:

execute:environs:async:

− (int)execute:(const char *)command environs:(const char *)environs

async:(BOOL)async

Begins execution of command. If async is YES then the method returns immediately

with the command identifier (a unique integer) that can be used when the command

eventually notifies the caller that it has been completed. If async is NO then it returns

the result of the system(3) call. The environs argument contains command-line style

environment variable definitions that are prepended to the command line before

execution.

See also: execute:, execute:async:

pipe:to::

− (int)pipe:(const char *)command to:anObject :(SEL)aSelector

async:(BOOL)async

Opens a pipe to the command command and sends the output lines to anObject with

the selector aSelector. aSelector should be a method that takes one argument, the

line that is bring processed. See below under pipe:environs:to::async: for the

semantics of an asynchronous request.

See also: pipe:environs:to::async:

pipe:environs:to::async:

− (int)pipe:(const char *)command environs:(const char *)environs to:anObject

:(SEL)aSelector async:(BOOL)async

Opens a pipe to the command command and sends the output lines to anObject with

the selector aSelector. For synchronous commands, aSelector should be a method

that takes one argument, the line that is being processed. For asynchronous

commands, aSelector should be a method that takes two arguments, the command

4

identifier that is returned by this method and the line that is being processed. The

environs argument contains command-line style environment variable definitions that

are prepended to the command line before execution. If pipe:environs:to::async: is

called to operate asynchronously, the target of the Executive will be notified in the

same manner as with execute:environs:async:.

See also: pipe:to::async:

showError

− showError:(int)err

− showError:(int)err while:(const char *)doingWhat

− showError:(int)err while:(const char *)doingWhat on:(const char *)fname

− showError:(int)err while:(const char *)doingWhat on:(const char *)fname

using:(const char *)prog

Allows the application to have a regular set of error-reporting abilities in various

degrees of granularity. The area in the upper portion of the NXRunAlertPanel panel

will be the text (by named parameter) "prog error" The lower part will have the text

"Error while doingWhat fname (error code err)"

All of the methods eventually call showError:while:on:using:. If any of the more

general methods are called, they substitute defaults for the missing parameters.

The defaults for these methods are:

doingWhat defaults to "executing a command"

fname defaults to "on a file"

prog defaults to "File"

Executive 5

